88 research outputs found

    Nonlinear spectroscopy in the strong-coupling regime of cavity QED

    Get PDF
    A nonlinear spectroscopic investigation of a strongly coupled atom-cavity system is presented. A two-field pump-probe experiment is employed to study nonlinear structure as the average number of intracavity atoms is varied from N̅≈4.2 to N̅≈0.8. Nonlinear effects are observed for as few as 0.1 intracavity pump photons. A detailed semiclassical simulation of the atomic beam experiment gives reasonable agreement with the data for N̅≳2 atoms. The simulation procedure accounts for fluctuations in atom-field coupling which have important effects on both the linear and nonlinear probe transmission spectra. A discrepancy between the simulations and the experiments is observed for small numbers of atoms (N̅≲1). Unfortunately, it is difficult to determine if this discrepancy is a definitive consequence of the quantum nature of the atom-cavity coupling or a result of the severe technical complications of the experiment

    Near-field imaging with two transmission gratings for submicrometer localization of atoms

    Get PDF
    We show theoretically that an atomic pattern with period d can be obtained with 100% visibility even for an infinitely extended source by sending atoms through two transmission gratings with periods d and d/2, respectively, and separated by half the Talbot length LT/2=d^2/2λdB, where λdB is the atomic wavelength and the source is infinitely far away. For a finite source distance, as would be attainable in any real experiment, a small correction to the grating periods and separations restores the period-d pattern. This effect is closely related to the Talbot and Lau effects in classical optics and can be used to localize atoms to a submicrometer scale without a compromise in atomic flux. We first derive compact analytical formulas for the idealized case of a monochromatic source and large gratings and then verify numerically that a finite grating size and velocity dispersion in the beam do not decrease the fringe visibility considerably. Finally, we briefly present an experiment in preparation to exhibit this localization

    Quantum Theory Approach for Neutron Single and Double-Slit Diffraction

    Full text link
    We provide a quantum approach description of neutron single and double-slit diffraction, with specific attention to the cold neutron diffraction (λ20\lambda \approx 20\AA) carried out by Zeilinger et al. in 1988. We find the theoretical results are good agreement with experimental data.Comment: 10 page

    Experimental verification of the Heisenberg uncertainty principle for hot fullerene molecules

    Get PDF
    The Heisenberg uncertainty principle for material objects is an essential corner stone of quantum mechanics and clearly visualizes the wave nature of matter. Here we report a demonstration of the Heisenberg uncertainty principle for the most massive, complex and hottest single object so far, the fullerene molecule C70 at a temperature of 900 K. We find a good quantitative agreement with the theoretical expectation: dx * dp = h, where dx is the width of the restricting slit, dp is the momentum transfer required to deflect the fullerene to the first interference minimum and h is Planck's quantum of action.Comment: 4 pages, 4 figure

    Bloch-Like Quantum Multiple Reflections of Atoms

    Full text link
    We show that under certain circumstances an atom can follow an oscillatory motion in a periodic laser profile with a Gaussian envelope. These oscillations can be well explained by using a model of energetically forbidden spatial regions. The similarities and differences with Bloch oscillations are discussed. We demonstrate that the effect exists not only for repulsive but also for attractive potentials, i.e. quantum multiple reflections are also possible.Comment: LaTeX, 7 pages, 7 figure

    An interferometric complementarity experiment in a bulk Nuclear Magnetic Resonance ensemble

    Full text link
    We have experimentally demonstrated the interferometric complementarity, which relates the distinguishability DD quantifying the amount of which-way (WW) information to the fringe visibility VV characterizing the wave feature of a quantum entity, in a bulk ensemble by Nuclear Magnetic Resonance (NMR) techniques. We primarily concern on the intermediate cases: partial fringe visibility and incomplete WW information. We propose a quantitative measure of DD by an alternative geometric strategy and investigate the relation between DD and entanglement. By measuring DD and VV independently, it turns out that the duality relation D2+V2=1D^{2}+V^{2}=1 holds for pure quantum states of the markers.Comment: 13 page, 5 PS figure

    Atomic matter wave scanner

    Get PDF
    We report on the experimental realization of an atom optical device, that allows scanning of an atomic beam. We used a time-modulated evanescent wave field above a glass surface to diffract a continuous beam of metastable Neon atoms at grazing incidence. The diffraction angles and efficiencies were controlled by the frequency and form of modulation, respectively. With an optimized shape, obtained from a numerical simulation, we were able to transfer more than 50% of the atoms into the first order beam, which we were able to move over a range of 8 mrad.Comment: 4 pages, 4 figure

    High resolution amplitude and phase gratings in atom optics

    Full text link
    An atom-field geometry is chosen in which an atomic beam traverses a field interaction zone consisting of three fields, one having frequency Ω=c/λ\Omega =c/\lambda propagating in the z^\hat{z} direction and the other two having frequencies Ω+δ1\Omega +\delta_{1} and Ω+δ2\Omega +\delta_{2} propagating in the -z^\hat{z} direction. For n1δ1+n2δ2=0n_{1}\delta_{1}+n_{2}\delta_{2}=0 and δ1T,δ2T1|\delta_{1}| T,|\delta_{2}| T\gg 1, where n1n_{1} and n2n_{2} are positive integers and TT is the pulse duration in the atomic rest frame, the atom-field interaction results in the creation of atom amplitude and phase gratings having period λ/[2(n1+n2)]% \lambda /[2(n_{1}+n_{2})]. In this manner, one can use optical fields having wavelength λ\lambda to produce atom gratings having periodicity much less than λ\lambda .Comment: 11 pages, 14 figure

    Corpuscular model of two-beam interference and double-slit experiments with single photons

    Get PDF
    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The simulation comprises models that capture the essential features of the apparatuses used in the experiment, including the single-photon detectors recording individual detector clicks. We demonstrate that incorporating in the detector model, simple and minimalistic processes mimicking the memory and threshold behavior of single-photon detectors is sufficient to produce multipath interference patterns. These multipath interference patterns are built up by individual particles taking one single path to the detector where they arrive one-by-one. The particles in our model are not corpuscular in the standard, classical physics sense in that they are information carriers that exchange information with the apparatuses of the experimental set-up. The interference pattern is the final, collective outcome of the information exchanges of many particles with these apparatuses. The interference patterns are produced without making reference to the solution of a wave equation and without introducing signalling or non-local interactions between the particles or between different detection points on the detector screen.Comment: Accepted for publication in J. Phys. Soc. Jpn
    corecore